Korean J Fam Pract 2020; 10(5): 316-323  https://doi.org/10.21215/kjfp.2020.10.5.316
Leaky Gut Syndrome
Kyu-Nam Kim*, Kwang-Min Kim
Department of Family Medicine, Ajou University School of Medicine, Suwon, Korea
Kyu-Nam Kim
Tel: +82-31-219-5309, Fax: +82-31-219-5218
E-mail: ktwonm@hanmail.net
ORCID: https://orcid.org/0000-0002-1213-5004
Received: April 17, 2020; Revised: May 20, 2020; Accepted: May 20, 2020; Published online: October 20, 2020.
© The Korean Academy of Family Medicine. All rights reserved.

This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Increased intestinal permeability, termed leaky gut syndrome (LGS), plays an important role in health and disease. LGS creates gaps in the intestinal walls that allow harmful bacteria and toxic substances to enter the bloodstream. Several researchers have found significant evidence to support the existence of a leaky gut. Emerging evidence also indicates that leaky gut contributes to a range of health conditions. LGS is closely associated with autoimmune diseases, liver conditions, diabetes, food allergies/hypersensitivity, irritable bowel syndrome, polycystic ovary syndrome, and autism. Therefore, LGS should be considered as a factor in the pathophysiology and differential diagnosis of patients presenting with autoimmune diseases, non-alcoholic fatty liver disease, liver cirrhosis, polycystic ovary syndrome, irritable bowel syndrome, diabetes, autism, food allergies, and food hypersensitivity. However, since there has not yet been a large-scale study regarding the causality between LGS and these diseases, further research is required to determine if LGS plays a pathogenic role in the progression and development of these diseases or whether these diseases lead to LGS. The 5R program, which includes non-absorbing antibiotic use, probiotic supplementation, exercising regularly, and certain dietary and lifestyle changes, may help restore impaired intestinal permeability.
Keywords: Leaky Gut Syndrome; Increased Intestinal Permeability; Gut Dysbiosis; Rifaximin; Probiotic
References
  1. Raleigh DR, Boe DM, Yu D, Weber CR, Marchiando AM, Bradford EM, et al. Occludin S408 phosphorylation regulates tight junction protein interactions and barrier function. J Cell Biol 2011; 193: 565-82.
    Pubmed KoreaMed CrossRef
  2. Shen L, Weber CR, Raleigh DR, Yu D, Turner JR. Tight junction pore and leak pathways: a dynamic duo. Annu Rev Physiol 2011; 73: 283-309.
    Pubmed KoreaMed CrossRef
  3. Russo JM, Florian P, Shen L, Graham WV, Tretiakova MS, Gitter AH, et al. Distinct temporal-spatial roles for rho kinase and myosin light chain kinase in epithelial purse-string wound closure. Gastroenterology 2005; 128: 9871001.
    Pubmed KoreaMed CrossRef
  4. Marchiando AM, Shen L, Graham WV, Edelblum KL, Duckworth CA, Guan Y, et al. The epithelial barrier is maintained by in vivo tight junction expansion during pathologic intestinal epithelial shedding. Gastroenterology 2011; 140: 1208-18.e1-2 .
    Pubmed KoreaMed CrossRef
  5. Rosenblatt J, Raff MC, Cramer LP. An epithelial cell destined for apoptosis signals its neighbors to extrude it by an actin- and myosin-dependent mechanism. Curr Biol 2001; 11: 1847-57.
    CrossRef
  6. Meddings JB, Westergaard H. Intestinal glucose transport using perfused rat jejunum in vivo: model analysis and derivation of corrected kinetic constants. Clin Sci 1989; 76: 403-13.
    Pubmed CrossRef
  7. Sadowski DC, Meddings JB. Luminal nutrients alter tight-junction permeability in the rat jejunum: an in vivo perfusion model. Can J Physiol Pharmacol 1993; 71: 835-9.
    Pubmed CrossRef
  8. Madara JL, Pappenheimer JR. Structural basis for physiological regulation of paracellular pathways in intestinal epithelia. J Membr Biol 1987; 100: 14964.
    Pubmed CrossRef
  9. Cummings JH, Antoine JM, Azpiroz F, Bourdet-Sicard R, Brandtzaeg P, Calder PC, et al. PASSCLAIM--gut health and immunity. Eur J Nutr 2004;43 Suppl 2: II118-73.
    Pubmed CrossRef
  10. Clarke LL. A guide to Ussing chamber studies of mouse intestine. Am J Physiol Gastrointest Liver Physiol 2009; 296: G1151-66.
    Pubmed KoreaMed CrossRef
  11. Hering NA, Fromm M, Schulzke JD. Determinants of colonic barrier function in inflammatory bowel disease and potential therapeutics. J Physiol 2012; 590: 1035-44.
    Pubmed KoreaMed CrossRef
  12. Grootjans J, Thuijls G, Verdam F, Derikx JP, Lenaerts K, Buurman WA. Noninvasive assessment of barrier integrity and function of the human gut. World J Gastrointest Surg 2010; 2: 61-9.
    Pubmed KoreaMed CrossRef
  13. Dastych M, Dastych M Jr, Novotná H, Cíhalová J . Lactulose/mannitol test and specificity, sensitivity, and area under curve of intestinal permeability parameters in patients with liver cirrhosis and Crohn's disease. Dig Dis Sci 2008; 53: 2789-92.
    Pubmed CrossRef
  14. Camilleri M, Nadeau A, Lamsam J, Nord SL, Ryks M, Burton D, et al. Understanding measurements of intestinal permeability in healthy humans with urine lactulose and mannitol excretion. Neurogastroenterol Motil 2010; 22:e15-26.
    Pubmed KoreaMed CrossRef
  15. van Wijck K, Verlinden TJ, van Eijk HM, Dekker J, Buurman WA, Dejong CH, et al. Novel multi-sugar assay for site-specific gastrointestinal permeability analysis: a randomized controlled crossover trial. Clin Nutr 2013; 32:245-51.
    Pubmed CrossRef
  16. Sapone A, de Magistris L, Pietzak M, Clemente MG, Tripathi A, Cucca F, et al. Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes 2006; 55: 1443-9.
    Pubmed CrossRef
  17. Suzuki T. Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci 2013; 70: 631-59.
    Pubmed CrossRef
  18. Smecuol E, Sugai E, Niveloni S, Vázquez H, Pedreira S, Mazure R, et al. Permeability, zonulin production, and enteropathy in dermatitis herpetiformis. Clin Gastroenterol Hepatol 2005; 3: 335-41.
    CrossRef
  19. Büning C, Geissler N, Prager M, Sturm A, Baumgart DC, Büttner J, et al. Increased small intestinal permeability in ulcerative colitis: rather genetic than environmental and a risk factor for extensive disease? Inflamm Bowel Dis 2012; 18: 1932-9.
    Pubmed CrossRef
  20. Benjamin J, Makharia GK, Ahuja V, Kalaivani M, Joshi YK. Intestinal permeability and its association with the patient and disease characteristics in Crohn's disease. World J Gastroenterol 2008; 14: 1399-405.
    Pubmed KoreaMed CrossRef
  21. Caserta L, de Magistris L, Secondulfo M, Caravelli G, Riegler G, Cuomo G, et al. Assessment of intestinal permeability and orocecal transit time in patients with systemic sclerosis: analysis of relationships with epidemiologic and clinical parameters. Rheumatol Int 2003; 23: 226-30.
    Pubmed CrossRef
  22. Maffeis C, Martina A, Corradi M, Quarella S, Nori N, Torriani S, et al. Association between intestinal permeability and faecal microbiota composition in Italian children with beta cell autoimmunity at risk for type 1 diabetes. Diabetes Metab Res Rev 2016; 32: 700-9.
    Pubmed CrossRef
  23. Cariello R, Federico A, Sapone A, Tuccillo C, Scialdone VR, Tiso A, et al. Intestinal permeability in patients with chronic liver diseases: its relationship with the aetiology and the entity of liver damage. Dig Liver Dis 2010; 42:200-4.
    Pubmed CrossRef
  24. Benjamin J, Singla V, Arora I, Sood S, Joshi YK. Intestinal permeability and complications in liver cirrhosis: a prospective cohort study. Hepatol Res 2013; 43: 200-7.
    Pubmed CrossRef
  25. Giorgio V, Miele L, Principessa L, Ferretti F, Villa MP, Negro V, et al. Intestinal permeability is increased in children with non-alcoholic fatty liver disease, and correlates with liver disease severity. Dig Liver Dis 2014; 46: 556-60.
    Pubmed CrossRef
  26. de Magistris L, Familiari V, Pascotto A, Sapone A, Frolli A, Iardino P, et al. Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. J Pediatr Gastroenterol Nutr 2010; 51: 41824.
    Pubmed CrossRef
  27. Marshall JK, Thabane M, Garg AX, Clark W, Meddings J, Collins SM. Intestinal permeability in patients with irritable bowel syndrome after a waterborne outbreak of acute gastroenteritis in Walkerton, Ontario. Aliment Pharmacol Ther 2004; 20: 1317-22.
    Pubmed CrossRef
  28. Odenwald MA, Turner JR. The intestinal epithelial barrier: a therapeutic target? Nat Rev Gastroenterol Hepatol 2017; 14: 9-21.
    Pubmed KoreaMed CrossRef
  29. Andersen K, Kesper MS, Marschner JA, Konrad L, Ryu M, Kumar Vr S, et al. Intestinal dysbiosis, barrier dysfunction, and bacterial translocation account for CKD-related systemic inflammation. J Am Soc Nephrol 2017; 28: 76-83.
    Pubmed KoreaMed CrossRef
  30. Spadoni I, Zagato E, Bertocchi A, Paolinelli R, Hot E, Di Sabatino A, et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Science 2015; 350: 830-4.
    Pubmed CrossRef
  31. Spadoni I, Fornasa G, Rescigno M. Organ-specific protection mediated by cooperation between vascular and epithelial barriers. Nat Rev Immunol 2017; 17: 761-73.
    Pubmed CrossRef
  32. Mouries J, Brescia P, Silvestri A, Spadoni I, Sorribas M, Wiest R, et al. Microbiotadriven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development. J Hepatol 2019; 71: 1216-28.
    Pubmed KoreaMed CrossRef
  33. Tilg H, Cani PD, Mayer EA. Gut microbiome and liver diseases. Gut 2016;65: 2035-44.
    Pubmed CrossRef
  34. Schnabl B, Brenner DA. Interactions between the intestinal microbiome and liver diseases. Gastroenterology 2014; 146: 1513-24.
    Pubmed KoreaMed CrossRef
  35. Lee SH, Kim KN, Kim KM, Joo NS. Irritable bowel syndrome may be associated with elevated alanine aminotransferase and metabolic syndrome. Yonsei Med J 2016; 57: 146-52.
    Pubmed KoreaMed CrossRef
  36. Cuello-Garcia CA, Fiocchi A, Pawankar R, Yepes-Nuñez JJ, Morgano GP, Zhang Y, et al. World Allergy Organization-McMaster University Guidelines for Allergic Disease Prevention (GLAD-P): prebiotics. World Allergy Organ J 2016; 9: 10.
    Pubmed KoreaMed CrossRef
  37. Fiocchi A, Pawankar R, Cuello-Garcia C, Ahn K, Al-Hammadi S, Agarwal A, et al. World Allergy Organization-McMaster University Guidelines for Allergic Disease Prevention (GLAD-P): probiotics. World Allergy Organ J 2015; 8: 4.
    Pubmed KoreaMed CrossRef
  38. Noverr MC, Huffnagle GB. The 'microflora hypothesis' of allergic diseases. Clin Exp Allergy 2005; 35: 1511-20.
    Pubmed CrossRef
  39. Vernocchi P, Del Chierico F, Fiocchi AG, El Hachem M, Dallapiccola B, Rossi P, et al. Understanding probiotics' role in allergic children: the clue of gut microbiota profiling. Curr Opin Allergy Clin Immunol 2015; 15: 495-503.
    Pubmed CrossRef
  40. Cosmi L, Liotta F, Maggi E, Romagnani S, Annunziato F. Th17 and nonclassic Th1 cells in chronic inflammatory disorders: two sides of the same coin. Int Arch Allergy Immunol 2014; 164: 171-7.
    Pubmed CrossRef
  41. Pike MG, Heddle RJ, Boulton P, Turner MW, Atherton DJ. Increased intestinal permeability in atopic eczema. J Invest Dermatol 1986; 86: 101-4.
    Pubmed CrossRef
  42. Lin R, Zhou L, Zhang J, Wang B. Abnormal intestinal permeability and microbiota in patients with autoimmune hepatitis. Int J Clin Exp Pathol 2015;8: 5153-60.
    Pubmed KoreaMed
  43. Khaleghi S, Ju JM, Lamba A, Murray JA. The potential utility of tight junction regulation in celiac disease: focus on larazotide acetate. Therap Adv Gastroenterol 2016; 9: 37-49.
    Pubmed KoreaMed CrossRef
  44. Fasano A, Shea-Donohue T. Mechanisms of disease: the role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nat Clin Pract Gastroenterol Hepatol 2005; 2: 416-22.
    Pubmed CrossRef
  45. Kawasaki E. Type 1 diabetes and autoimmunity. Clin Pediatr Endocrinol 2014; 23: 99-105.
    Pubmed KoreaMed CrossRef
  46. El Asmar R, Panigrahi P, Bamford P, Berti I, Not T, Coppa GV, et al. Host-dependent zonulin secretion causes the impairment of the small intestine barrier function after bacterial exposure. Gastroenterology 2002; 123: 1607-15.
    Pubmed CrossRef
  47. Costa FR, Françozo MC, de Oliveira GG, Ignacio A, Castoldi A, Zamboni DS, et al. Gut microbiota translocation to the pancreatic lymph nodes triggers NOD2 activation and contributes to T1D onset. J Exp Med 2016; 213:1223-39.
    Pubmed KoreaMed CrossRef
  48. Tsokos GC. Systemic lupus erythematosus. N Engl J Med 2011; 365: 211021.
    Pubmed CrossRef
  49. Mu Q, Zhang H, Luo XM. SLE: another autoimmune disorder influenced by microbes and diet? Front Immunol 2015; 6: 608.
    Pubmed KoreaMed CrossRef
  50. Nockher WA, Wigand R, Schoeppe W, Scherberich JE. Elevated levels of soluble CD14 in serum of patients with systemic lupus erythematosus. Clin Exp Immunol 1994; 96: 15-9.
    Pubmed KoreaMed CrossRef
  51. Lee TP, Huang JC, Liu CJ, Chen HJ, Chen YH, Tsai YT, et al. Interactions of surface-expressed TLR-4 and endosomal TLR-9 accelerate lupus progression in anti-dsDNA antibody transgenic mice. Exp Biol Med (Maywood) 2014; 239: 715-23.
    Pubmed CrossRef
  52. Lee TP, Tang SJ, Wu MF, Song YC, Yu CL, Sun KH. Transgenic overexpression of anti-double-stranded DNA autoantibody and activation of Toll-like receptor 4 in mice induce severe systemic lupus erythematosus syndromes. J Autoimmun 2010; 35: 358-67.
    Pubmed CrossRef
  53. Liu B, Yang Y, Dai J, Medzhitov R, Freudenberg MA, Zhang PL, et al. TLR4 up-regulation at protein or gene level is pathogenic for lupus-like autoimmune disease. J Immunol 2006; 177: 6880-8.
    Pubmed CrossRef
  54. Summers SA, Hoi A, Steinmetz OM, O'Sullivan KM, Ooi JD, Odobasic D, et al. TLR9 and TLR4 are required for the development of autoimmunity and lupus nephritis in pristane nephropathy. J Autoimmun 2010; 35: 291-8.
    Pubmed CrossRef
  55. Lartigue A, Colliou N, Calbo S, François A, Jacquot S, Arnoult C, et al. Critical role of TLR2 and TLR4 in autoantibody production and glomerulonephritis in lpr mutation-induced mouse lupus. J Immunol 2009; 183: 620716
    Pubmed CrossRef
  56. Wu YW, Tang W, Zuo JP. Toll-like receptors: potential targets for lupus treatment. Acta Pharmacol Sin 2015; 36: 1395-407.
    Pubmed KoreaMed CrossRef
  57. Sester DP, Sagulenko V, Thygesen SJ, Cridland JA, Loi YS, Cridland SO, et al. Deficient NLRP3 and AIM2 inflammasome function in autoimmune NZB mice. J Immunol 2015; 195: 1233-41.
    Pubmed CrossRef
  58. Bae S, Lee KJ, Kim YS, Kim KN. Determination of rifaximin treatment period according to lactulose breath test values in nonconstipated irritable bowel syndrome subjects. J Korean Med Sci 2015; 30: 757-62.
    Pubmed KoreaMed CrossRef
  59. Lee SH, Kim CR, Kim KN. Changes in fecal calprotectin after rifaximin treatment in patients with nonconstipated irritable bowel syndrome. Am J Med Sci 2019; 357: 23-8.
    Pubmed CrossRef
  60. Lamprecht M, Bogner S, Schippinger G, Steinbauer K, Fankhauser F, Hallstroem S, et al. Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, doubleblinded, placebo-controlled trial. J Int Soc Sports Nutr 2012; 9: 45.
    Pubmed KoreaMed CrossRef
  61. Kelly CP, Green PH, Murray JA, Dimarino A, Colatrella A, Leffler DA, et al. Larazotide acetate in patients with coeliac disease undergoing a gluten challenge:a randomised placebo-controlled study. Aliment Pharmacol Ther 2013; 37: 252-62.
    Pubmed CrossRef
  62. He WQ, Qiao YN, Zhang CH, Peng YJ, Chen C, Wang P, et al. Role of myosin light chain kinase in regulation of basal blood pressure and maintenance of salt-induced hypertension. Am J Physiol Heart Circ Physiol 2011; 301:H584-91.
    Pubmed KoreaMed CrossRef


This Article

e-submission

Archives